
Weiwei Zhao, Jesse L. Bischof, Jimmy Hutasoit, Xin Liu, Thomas C. Fitzgibbons, John R. Hayes, Pier J.A. Sazio, Chaoxing Liu, Jainendra K. Jain, John V. Badding and M. H. W. Chan
Resistance measurements were made as a funcIon of temperature and magneIc field on a 6 mm long Ga-‐In eutecIc nanowire confined in a hollow glass fiber of 150nm inner diameter. Novel hystereIc switching between stable superconducIng and resisIve states are seen. The nonzero resistance occurs when a Ga nanodroplet spontaneously formed along the length of the nanowire traps one or more superconducIng fluxons, thereby driving a Josephson weak-‐link created by a second nearby Ga nanodroplet normal. This experiment opens the possibility of developing single-‐fluxon logic and memory devices.